REACTANCE FORMULAS

$$C = \frac{1}{2\pi f X_0}$$

$$X_C = \frac{1}{2\pi fC}$$
 EQUAL RESI

$$L = \frac{X_L}{2\pi f}$$

$$X_L = 2\pi f L$$

RESONANT FREQUENCY FORMULAS

$$F = \frac{1}{2\pi\sqrt{LC}}$$

$$f_{kHz} = \frac{159.2}{\sqrt{1.0}}$$

$$L = \frac{1}{4\pi^2 f^2 C}$$

$$L_{\mu HY} = \frac{25,330}{f^2C}$$

$$C = \frac{1}{4\pi^2 f^2 L}$$

$$C_{\mu FD} = \frac{25,330}{f^2 L}$$

Where f is in kHz L is in microhenries C is in microfarads

CONVERSION FACTORS

$$\pi = 3.14$$

$$2\pi = 6.28$$
 $\log \pi = 0.497$

$$\pi^2 = 9.87$$
1 meter = 3.28 feet

1 inch = 2.54 centimeters

1 radian = 57.3°

FREQUENCY AND WAVELENGTH FORMULAS

$$f_{kHz} = \frac{3 \times 10^5}{\lambda_{METERS}}$$

$$\lambda_{METERS} = \frac{3 \times 10^{5}}{f_{total}}$$

$$f_{MHz} = \frac{984}{\lambda_{FEET}}$$

$$\lambda_{\text{FEET}} = \frac{984}{f_{\text{MHz}}}$$

 $0.625\lambda = 225^{\circ} = \frac{5}{8}$ WAVE

0.5λ = 180° = HALF WAVE

 $0.311\lambda = 112^{\circ}$

0.25\(\lambda = 90\circ = QUARTER WAVE

RESISTORS IN SERIES

$$R_{TOTAL} = R_1 + R_2 + R_3 + \cdots$$

RESISTORS IN PARALLEL

EQUAL RESISTORS

$$R_{TOTAL} = \frac{R}{n}$$
 Where n is the total number of resistors

UNEQUAL RESISTORS

$$R_{TOTAL} = \frac{1}{\frac{1}{R_1} + \frac{1}{R_2} + \frac{1}{R_3} + \cdots}$$

$$R_{TOTAL} = \frac{R_1 R_2}{R_1 + R_2}$$

$$R_1 = \frac{R_T R_2}{R_2 - R_T}$$

If the current through a resistor doubles, the power dissipated quadruples

IMPEDANCE FORMULAS

SERIES CIRCUITS - R & X IN SERIES

$$Z = \sqrt{R^2 + (X_L - X_C)^2}$$

PARALLEL CIRCUITS - R & X IN PARALLEL

$$Z = \frac{RX}{\sqrt{R^2 + X^2}}$$

DIRECT POWER FORMULA

$$P = I^2R$$

Where I is the common point or base current in amperes, and R is the common point or base resistance in ohms

INDIRECT POWER FORMULA

Where I is the final P.A. current in amperes. E is the final P.A. voltage in volts, and effy is the transmitter efficiency expressed in decimal form (79% = 0.79)

SINE WAVE CONVERSION

Effective Value = 0.707 × Peak Value Average Value = 0.637 × Peak Value

Peak Value = 1.414 × Effective Value (RMS)

Effective Value = 1.11 × Average Value

Peak Value = 1.57 x Average Value

Average Value = 0.9 × Effective Value (RMS)

OHM'S LAW FORMULAS FOR DC CIRCUITS

ONE CYCLE TIME DURATION

 $10kHz = 100\mu sec$ $20kHz = 50\mu sec$

 $100kHz = 10\mu sec$

200kHz = 5µsec 250kHz =

4µsec $1MHz = 1\mu sec$

 $4MHz = 0.25 \mu sec$

 $10MHz = 0.1 \mu sec$

BINARY TO BASE 10 CONVERSION

$$1 (2^3) = 8$$

 $0 (2^2) = 0$

$$1(2^1) = 2$$

 $1(2^0) = + 1$

DECIBEL FORMULAS

Where impedances are equal

$$dB = 10 \log \frac{P_1}{P_2} = 20 \log \frac{E_1}{E_2} = 20 \log \frac{I_1}{I_2}$$

Where impedances are unequal

$$dB = 10 \log \frac{P_1}{P_2} = 20 \log \frac{E_1 \sqrt{Z_2}}{E_2 \sqrt{Z_1}} = 20 \log \frac{I_1 \sqrt{Z_1}}{I_2 \sqrt{Z_2}}$$

0dBm (1mW) = 0.774 volts across 600 ohms 0.387 volts across 150 ohms 0.224 volts across 50 ohms

TRANSFORMER TURNS RATIOS

Primary Power = Secondary Power

$$\frac{N_P}{N_S} = \frac{E_P}{E_S} = \frac{I_S}{I_P} = \sqrt{\frac{Z_P}{Z_S}}$$